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ABSTRACT

in this paper, the mixed problem for parabolic equations is investigated
with the discontinuous coefficient at the highest derivative and with non-
standard boundary conditions. Namely, the boundary conditions contain
values of the solution not only on the boundary points, but also on the
inner points of the considered domain as well. Moreover, abstract func-
tionals are involved in the boundary conditions. We single out a class of
functional spaces in which coercive solvability occurs for the investigated
problem.

1. Statement of the problem
Let us consider a parabolic equation
o%u

oz2

Ou

Ly

+ a(t, ) +b(t,z)u = f(t,z), t€l0,T], =ze[-1,1]\{0}

with functional, many-point conditions
( Liu(t, o) = aqul™ (¢, —1) +g;u;ml>(t, —0)
+ inlkuiml’(t,wlk) + Tyu(t,®) =0,
Lou(t,e) = azu(zm"’)(t,+0) +;2:%1t§_.m2)(t, 1)
2

+ Z Nowul™) (¢, z2x) + Toul(t, o) = 0,
\ k=1
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transmission conditions

(1.3) Lyu(t, ) = §y_oul™)(t,—0) +v,_oul™)(t, +0) + Tyu(t,®) =0, y=3,4
and initial condition

(1.4) u(0, ) = up(z),

where a(t,z) = a1(¢) at (¢,x) € [0,7] x [-1,0) and a(t,z) = ay(t) at (¢,z) €
[0,T] x (0,1); for each y =1, 2, 3, 4, my =0or 1; 1% € (—1,0), z2x € (0,1) are
intermediate points; T, are abstract linear functionals; a;(t), b(t,z) and f(t,z)
are complex valued functions; all coefficients of the boundary and transmission
conditions are complex numbers; ugm”)(t, 10) denotes lim,_, 4+ ul™) (t,z).

Problems of the above type arise, as a rule, in problems of the theory of heat
and mass transfer (see, for example, [5]), in diffraction problems (see, for example,
[1]) and in a varied assortment of physical transfer problems.

2. The Cauchy problem for the differential equation in Banach space
corresponding to the problem (1.1)-(1.4)

For any ¢ € [0,T] denote by A{¢) a linear operator in Banach space Lo(—1, 1),
1 < ¢ < o0, with domain of definition

D(A) = D(A(t)) = {u € W2(-1,0)® W2(0,1)| Lyu =0, y=1, 2, 3, 4}
independent of ¢ € [0, T, and with action law
(2.1) A(t)u = a(t, z)u" (z) + b(t, z)u(z).
Then the problem (1.1)-(1.4) may be rewritten in the differential-operator form
(2.2) W/ () + Au(t) = £(1), w(0) = up,

where u(t) =u(t,e), f(t)= f(t, o) are functions with values in the space Lq(—1,1)
and up(e) = up € Lg(—1, 1). Here, by W;*(~1,0) ® W;*(0,1) we denote the
Banach spaces of functions u(z) on (—1, 1) belonging to W2(-1, 0) and WZ(0, 1)
in (=1, 0) and (0, 1), respectively, with the norm [lullgm = |lullwm(-1,0) +
lullwzm(0,1) where, as usual, Ly(a,b) and W7 (a,b) are the well-known Sobolev
spaces.

For estimating the resolvent of operator A(t) we shall investigate the corre-
sponding boundary-value problem for ordinary linear differential equations.
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3. The associated spectral problem

The following nonhomogeneous boundary-value problem for ordinary differential
equations is called the associated spectral problem for the problem (1.1)-(1.4):

(3.1) LA\)u = a(z)u” + b(z)u — du = f(z), x€[-1, 1\O,
(3.2) Lyu=g9, y=1,2, 3,4,

where the boundary functionals L, are defined by (1.2) and (1.3); b(z) is a
bounded measurable function on [-1, 1]; a(z) = a1 at = € [-1,0), a(z) = ag at
z € (0,1]; a; # 0 and g, are some complex numbers.

Note that boundary value problems for ordinary differential equations with
functional, many point conditions were first investigated by S. Ya. Yakubov (see,
for example, [8, 9]).

First we study the principal part of the problem (3.1), (3.2). Namely, denoting

(33)  Lo(Wu = a(z)u"(z) — Mu(z), Lyu=Lu—Tu, y=1,2 3,4,

where Tyu = Tyu+ 3 p by Mykul™) (zy) fory = 1, 2 and T,u = Tyufory = 3, 4,
consider the pure differential problem

(3.4) Lo(Mu = f(z), Lyu=gy, y=1,2, 3, 4

In this paper, everywhere the angle (—7 + @ +¢) < arg A < (7 + w — €), where
w = max{arga;,argas} and w = min{arga;,argasz}, is denoted by G, and the
number 6 is defined as

71 72

(51(\/0,_1)7”3_"14 52(_\/6)"13—"14 ’

where /z denotes +/|zlexp(iarg z/2),—m < argz < 7.

0= a,B

LEMMA 3.1: Let 8 # 0. Then for any € > 0 there exists R, > 0, such that for
all A € G, for which |A| > R, the linear operator

Lo(A): u — (Lo(Mu, Liou, Laou, Lsgu, Lypu)

from W2(—1,0) ® W2(0,1) onto Ly(—1,1) ® C* is an isomorphism and for these
A for the solution of problem (3.4) the following coercive estimate holds:

2 4
35 YN ulles < CE)(Ifllg0 + 3 N2 ),
y=1

k=0
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where C(g) is a constant which depends only on €.

Proof: Continuity of the operator Lg(}) is obvious. Let us prove that for indi-
cated X the operator Lo()) has a continuous inverse Ly ' (). Let f € L,(—1,1),
A € G, and |)| be sufficiently large. We seek a solution u(z) = u(z, A) of the
problem (3.1), (3.2) in the form of the sum u{z) = u1(z) + uz(z), where uy(z) =
ui(z, A) is some solution of the equation Lo(A)us = f(z) and ug(x) = us(z, A) is
a solution of the boundary value problem

(3.6) Lo{Mu2 =0, Lyoups =gy — Lyou1, y=1, 2, 3, 4.

For a short exposition, denoting I; = (—1,0), Iz = (0,1) and A = s?, consider
the equations

(37) a‘yullly(w) - 32u1y($) = fy(x)a zeR= (—O0,00), Y- 1;27

where f,(x) = f(z) at ¢ € I, andfy(x) = 0 at = € I,. Applying the Fourier

transformation
+co

(PO =57 [ e pla)ds

to the equation (3.7) we have

(ay(i0)? — §%)Fuy, = Ff,.
Since for A € G, 0 € R the estimate
(3.8) |ay(io)? — 5*| > C(e) (lo* + |s]?)

holds, by virtue of the well-known properties of the Fourier transformation for
k=0, 1, 2 we have

Il

u(lz) (z) F1 ((iq)kFuly)
-

(3.9) ! ((i0)*(ay(i0)® — $*)"1F f),

where F'~! is the inverse Fourier transformation. In view of (3.8) for A € G, the
functions
hiey(0) = 827 F(i0)* (ay(io)? —*) ™", k=0, 1, 2

are continuously differentiable on R and satisfy the inequalities

iy ()] < Ce),  Ihiy ()] < C(e)lo] ™.



Vol. 114, 1999 MIXED PROBLEM FOR PARABOLIC EQUATIONS 243

Then by virtue of the Mikhlin-Schwartz theorem [3, p. 1181] the functions Ay, (o)
are Fourier multipliers from L,(—1,1) to Lg(—1,1), i.e.

1F " iy - FfllL,r) < CryllfllLy ()

for all f € Ly(R), where Cy,, are constants. Hence the function

ury(z) = P ((ay(i0)2 - 32)—1ny)

found from (3.9) at k = 0 is a solution of equation (3.7) belonging to Wq2 (R) and
for which the estimates

_ k -
(3.20) |s2Fluille, @ = 1F "y - FONom < Cryllfll,my k=0, 1, 2

are satisfied. Consequently, the function u;(z) defined by u;(z) = u11(z) at
x € I} and uy(x) = uia(z) at x € I, is a solution of the equation Lo(A)uy = f
and, by (3.10), satisfies the following estimate:

2

(3.11) S Ay

k=0

lg.e < CEfllg.0-

Now let us prove that for any complex numbers gy, y = 1, 2, 3, 4 the problem
(3.6) has a unique solution uy(z) = ua(x, A) belonging to W2(—1,0) & W2(0,1)
and satisfying the estimate (3.5).

The general solution of the equation Lo(A)u = 0 can be represented in the
form

(3.12) ug(z) = chuzy(z)
y=1

where the solutions ugy(z) are defined by ug,(x) = exp(Mwyz) at z € @, and
ugy(z) = 0 at = & Q, where w; = (y/a1) ™}, wp = —(y/a1)™ !, ws = (Vaz) ™1,
wg = —(vaz)™t, Q1 = O = I, U3 = Q4 = I;. By substituting (3.12) into
the boundary conditions of problem (3.6} we obtain a system for finding the
coefficients ¢,, y =1, 2, 3, 4,

4

(3.13) chLimy =gi— Lpuy, i=1,2, 3, 4.
y=1
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Below, in terms of [M], where M is some complex number, we denote any function
of the form M + r()), where (A} — 0 for A € G; as |A] = oo. Then, using the
inequality

(3.14) Re((=1)Yw,s) < —S—z——lwyllsl, AeG.,

we can obtain the following asymptotic formula for the determinant A()\) =
det(Lsgugy) of the system (3.13),

(w18)™[B1]  (was)™ e [ay] 0 0
B 0 0 (w3s)™2e“3°[Ba]  (was)™*[02]
AN = (w18)™ vy (wo8) ™3y (wss)™3d; (was)™2d
(w18)™ o (wa8) ™y, (w3s)™ 6, (wq8)™462

Using the inequality (3.14) it is easy to verify that
Y
(3.15) A(N) = wywg'? sheu=1 Y eTW25e38 )

Since 8 # 0, then for any ¢ > 0 there exists R. > 0 such that for all A € G,,
IAl > R. we have A(A) # 0. Thus, for these A the system (3.13) has a unique

solution .
Ayi(’\)
=N (g — L — 2

2()\) (g‘t L;()’Uq), Yy 1, 3 3’ 47

i=1
where A,;(\) is an algebraic complement of the (y,i)th element of the
determinant A(X). Hence

4 4 )
(3.16) w(@) =Y ( 2ol o - me) sy (2.

y=1 \i=1

Now we can estimate the norms |]u§m)||q,0 for m =0, 1, 2. Using the inequality
(3.14) from the explicit form of the algebraic complement A,;(A) we can obtain
the following asymptotic equations in the form

Ayl ()\) — 57n2+m3+m4e(w1+w2)8[gy1],

Ay2()\) — 5m1+ms+m4ew28[gy2],

Ay3()‘) = gmMitmatmy [gys]’

Ays(X) = smtmetmsfg ] y=1, 2, 3, 4,

(3.17)

where 6,; are complex numbers.
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Then from the asymptotic expressions (3.15), (3.17) and inequality (3.14) it
follows that
Ayi(/\)

A(X)

Hence, for any m =0, 1, 2 we have

(3.18)

Y

' N lg0 < Cle)|s| "™Vt N e G, A > R..

4

(3.19) lus™ g0 < CEIsI™™ VT ™ S (lgyl + |Lyour)).
y=1
With the estimate |Lyoui| = |Lyoui(-,A)| for X € G, |A] = oo we use the
interpolation inequality {2, Theorem 3.10.4]
(3.20)
max 00 (@) < O (Nl oy + € el en) s v € WD)

where 0 < j < m, 7 =(j +1/q)/m, € > 0 is a sufficiently small number, C is a
constant, and [a, b] is a finite segment. Setting ¢ = |s|~2 and taking into account
estimate (3.11) we get
My
Lo (] < CE) Y (175 g + s/ g
=0
< Ce)s| 7™ 1 fllgo, A€ Ge.

Substituting this estimate into (3.19) we get

4
51~ ug™ flg.0 < C(E)(HfIlq,o +y |S|2_m‘~‘_1/"|gy|>, m=0,1, 2,
y=1
which is valid for A € Ge, |A] > R.. It follows from this and (3.11) that the
estimate (3.5) holds for the solution u{z,A) = ui(z, A) + ua{z, A} to problem
(3.4). Uniqueness of this solution follows from the uniqueness of the solution to
problem (3.7). The lemma is proved. 1

4. The Fredholm property of the main spectral problem

To prove the coerciveness of the main spectral problem (3.1), (3.2) we shall first
establish the Fredholm property of this problem. We assume that the linear
bounded operator A from the Banach space F into a Banach space F called a
Fredholm, for the range of values R{(A) = {Au| u € E} closed in F, Ker4 =
{u € E| Au = 0} and cokerA = {v' € F'| ¥/(Au) = 0,u € E} are finite-
dimensional subspaces in E and F’, respectively, and dimker A = dim coker 4,
where F’ is a dual to F' (see, for example, [9]).
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LEMMA 4.1: Let the linear functionals Ty, y = 1, 2, 3, 4 be continuous in space
W2(—~1,0) ® W2(0,1). Then the linear operator

L(N): u = (L(\u, Lyu, Lyu, Lau, Law)
from W2(—1,0) @ W2(0,1) to Ly(=1,1) ® C* is Fredholm.

Proof: Let Ay € G¢ be any complex number. Defining the auxiliary linear
operator L1()) by

D(Li(A\) = D),  LiWu = (b(z)u(z) + (ho — Nu(e), Ty, ..., Tyu),

we can represent the operator L()\) in the form of the sum L()\) = Lg(Xo) +
I:l()\). For )¢ € G, sufficiently large in modulus, the operator ig()\o) from
WZ2(~1,00@W2(0,1) onto Ly(—1,1)®C* is an isomorphism by Lemma 3.1. Since
the functionals T}, are continuous in W2(—1,0) & W2(0,1) and the embedding
W2(—1,0)8W2(0,1) C Lg(—1,1) is compact [7, p. 350], then the operator Li(\)
is compact for any A € C. Now, it is enough to apply the theorem of Fredholm
operator perturbation [4, p. 238] to the operators Lo()o) and L1 ()), from which
we obtain that the sum L(\) = Lo(Xo) + L;()) is Fredholm. The thorem is
proved. |

5. Coerciveness of the main spectral problem

Now, using Lemma 3.1 and Lemma 4.1 we can establish the coerciveness of the
problem (3.1), (3.2).

THEOREM 5.1: Let 0 # 0, and the functionals T, are continuous in the space
Wi (—=1,0) @ Wy (0,1), y = 1, 2, 3, 4. Then for any € > 0 there exists
R. > 0, such that for all A € G, for which |A| > R. the operator L(\): u —
(L(A\)u, Lyu, Lyu, L3u, Lyw) from W2(—1,0) @ W7(0,1) onto Ly(~1,1) & C* is
an isomorphism, and for those A for the solutions of the problem (3.1), (3.2) the
coercive estimate

2 4

G1) > AT ullgr < Cle) (||f||q,0 +3 IAI(Q”"’”"”"WIgyI)
k=0 y=1

holds.

Proof: First we shall establish the a priori estimate for the solutions of the
problem (3.1), (3.2). It is clear that any u € W2(—1,0) ® W2(0,1) satisfies the
problem

Lo(Nu = L(Nu—b(z)u, Lyou=Lyu—-Tu, y=1,..,4
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Applying Lemma 3.1 to this problem we have the inequality

2
S 1l Fllullr <C(e) (um)u — b(@)ullgo

k=0

4
+ Z |s|G=mu =YL 4 — Tyu|>

y=1

4
<C (IOl + 3 1sf ™ L

y=1

(5.2 fbulge + S |s|<2-mv-1/q>|fyu|)

y=1

which is valid for all A € G, sufficiently large in modulus, where A =

Obviously
4 4
(5.3) Z!sl<2_my_l/q)jTyuj < CZ ,3,(24%—1/@”2‘“%%
y=1 y=1
2
<OV sl F g -
k=0
Denote

Ny
Tou= E Myr™) (T ).
k=1

247

s2.

Let y = 2; then xyx € (0,1). Using, for example, [2, 2.8.3], we construct the

function n(z), which satisfies the following conditions:

€ C°(R) ()*{1’ zelo1=a) 0<n(z) <1
neCT®L A=y, pep,dqun - sy, ST
where § = miny g {zyr, 1 — 4% }. Then

(5.4) ITyul < Cllut™lles,1-5) < Cll ()™l oo,uy-

By virtue of {2, Theorem 3.10.4],

(5.5) |s1>~ ™ M9 [u™ o0,y < Clllullg,2 + 15 ullg,0)-
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From (5.4), (5.5) and estimate (3.5), for a solution of problem (3.4) for these A
we find that
|s|> ™ 9Tl < s>~ () ™l 0,1y
< Cllinullg,z + Is*Imullg,0) < CENLo(N) (nw)llq,0
2
(56) < 0 (InEMullgo + In(@)bla)u@ligo + 3 IsP ™l )

k=1

2
< CE) (Il + Y 1o lullg-1).
k=1
For any & > 0 we have
lellgk—1 < Sllullgk + C(6)llu

Iq,O;
then by virtue of (5.6)

|s|>=m™ 4 Tu| < O(e) [llfllq,o + ) 1sPFOllullgr + C(J)thllq,o)}

k=1

2

(5.7) < CEMN g0+ (CE)5 +Cle, 8)ls ™) S 5P Flullg -
k=0

Here we used the following obvious inequality:

2

D 15 Fllullgo < Isl™HslPlullg,o-

k=1
Similarly, the estimate (5.7) can be established for the other values of y, i.e.
y =1, 3, 4. It is clear that for a fixed £ > 0 it is possible to choose § > 0 so

small and |A| so large that
Cls|7*9+ C(e)5 + C(e,b)|s| ™" < 1.

By taking into account (5.3) and (5.7) in (5.2) we obtain for |s| > R, the next a

priori estimate,
2

(58) 3 IsP Hlullor < CE(IEWullgo + 3 11D Lyul).

k=0 y=1
From this inequality it follows that a solution of the problem (3.1), (3.2) is unique,
i.e. dimKer L(\) = 0 and L~'(}) is continuous. Then by virtue of Lemma 4.1,
R(L())) = L,(—1,1) ® C*. Consequently, the operator L(}) is an isomorphism.
The estimate (5.1) for the solutions of the problem (3.1), (3.2) is obtained from
the found a priori estimate (5.8) immediately. Therefore, the theorem is proved.
|
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6. Coerciveness of the Cauchy problem for the discontinuous parabolic
equation in the Banach space L,{—1,1)

In this section, using the results of section 5 above, we indicate a class of Banach
spaces for which the coercive solvability of the considered problem (1.1)—(1.4)
has been undertaken.

By C§([0,T], W¥) we shall define the set of continuous functions u(t), on [0, T},
with values in Banach space WF(-1,0) @ WE0,1), k = 0, 1, 2, for which the
norm

lu(t +h) — w(®)llgk
Ul = max |[u(t)gx + su t* Y
lellaa.) = max ffu(®llo Gy AP he

is finite, where a € (0,1) is some number. It can be shown that the linear space
C([0,T],WF) is a Banach space under the above norm |[u|g,(g.x)-

THEOREM 6.1: Suppose the following conditions are satisfied:
(1) |arga;(t)] > m/2 forany t € [0,T],i =1, 2.
(2) The functions t — a;: [0,T] — C (i = 1,2) and t — b(t,e): [0,T] —
Lq4(—1,1) satisfy the Holder condition with power a, i.e. for all 0 <t <
t+h<T

lai(t + h) — a(t)] < Ch*, ||b(t + h,e) — b(t,®)||q0 < Ch*.
(3) For any t € [0,T]

N Y2
01(var(£))™ 7™ Ga(—v/az(t))me
(4) The functionals T, (y = 1, 2, 3, 4) are continuous in the space
Wy (~1,0) & W, (0,1).
Then for any f € C§{[0,T}, L,) and for any ug € WZ{—1,0) ® WZ(0,1) such
that Lyug =0, y =1, 2, 3, 4 there exists a unique sofution u{t) = u(t,z) of the
problem (1.1)—(1.4) and the following coercive estimate holds:

du
dt

0(t) = 12 #0

(6.1)

(00) + “U”a,(q,Q) < C(“f”a,(q,ﬂ) + ““0“«1,2)»
a,{q,0

where the constant C is independent of f and ug.

Proof: The problem (1.1)-(1.4) is transformed to the operator-differential form
as (2.2). We set

@ = sup max{arg(—a(t)),arg(—az(t))},
tel0,T)

w= tei[%,fT] min{arg(—a1(t)), arg(—az(t))}.
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From the first condition of this theorem it follows that there exists a number
€ > 0sothat {A\: ReA>0} C{X —7m+wW+e<argA<7m+w—ec}. Then by
virtue of Theorem 5.1, there exist a number ¢ > 0 such that for the resolvent of
the operator A(t) the estimate

(6.2) A+ 2D <CA+|AD)7Y, Rex>o

holds.

Consequently, there exists a number u > 0 such that the operator A,(t) =
A(t) + pl has a bounded inverse.

Let us establish that the operator function A(t)(A(0) + uI)~! satisfies the
Hélder condition with power o. Using inequality (3.20), in view of condition (2),
for u € D(A) we have

(At + h) — A(t))ullgo <li(a(t + h, o) — a(t, 9))u"(®)llq0

(6.3) lu(z)[|[b(t + h, o) — b(t, ®){lg,0

+ max
z€{~-1,1]\0
<Ch®|lullq,2-

It is necessary to note that, here and everywhere, any constant appearing in
the estimates is denoted by the same symbol as C.

Further, by virtue of Theorem 5.1 the operator A, (0) acting from W2(—1,0)®
WZ(0,1) onto Lg(—1,1) has a bounded inverse. Hence, the inequality (6.3)
implies that

[(A(t + h) — A())ullgo < CR*[|AL(0)ullgo, u € D(A).
From this, it immediately follows that

(6.4) (At +h)AL1(0) — A()AZ(0)ullgo < Ch*|lullgo, u € Lg(~1,1),
i.e. the operator function A(t)A;'(0) satisfies the Hélder condition with power
a. Therefore, having in view the work [6] we get the following estimate for the
solution of the problem (1.1)-(1.4):

du

(6.5) =

+ (A + uDulla,g,0) < CUIflla(g,0) + lluollg2)-
a,(q,0)

Now let us establish that the estimate

(6.6) lulla,g,2) < CllAutlla,(o,0
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is valid for all u € C§([0,T],W?) for which boundary conditions (1.2) and (1.3)
hold.  For this, first we establish a series of auxiliary estimates. By
using the estimates (6.2) and (6.4) it follows that the real value function t —
l4,(0)A; (®)]|: {0,T] — R is bounded. Then, having in view the latter condi-
tions and using Theorem 5.1 we have

(6.7) lullg,2 < CllAL(0)ullgo < ClIALO)AZ BN - 1 Au(t)ullq0
< CllAu)ullgo, ue D(A).
By using Theorem 5.1 for 0 <t <t + h < T, we also have
llu(t + h) — u(t)llq2 SClALE) (ult +h) —u(t))lle0
SC([JAu(t + h)ult + h) — Au(@)ult)llq0
+ 1(Ap(®) = Ault + B))u(t + h)llg.0)-

Further, recalling that the operator function A, (t)A;'(0) satisfies the Holder
condition with power o, we get

(Au(®) = Au(t + h))u(t + h)llgo < Ch*|AL(0)u(t + R)q.0
< Ch||4u(0) AL (¢ + R
WAL+ R)u(t + R)llg0
< Ch¥||Au(t + h)u(t + h)llg.0
< Ch® max [ Au(u(t)lyo.
Hence,
(6.8)  lut +h) —u(®)llg2 < C(IAL(E + Ru(t + h) — Au(H)u(t)llq,0
+ h® oDRE 1A, () u(t)llq,0)-
Taking into account (6.7) and (6.8), we finally have

llla,(g2) = max |lut)llg2+  sup por 10 )a (#)llq,
Osts<T 0<t<t+h<T h

o llu(t+h) —u(t)|lq,2
< L
_C(OmStaXST 1AL @) u(t)llq0 + ogti?fhgt e )

gc(égguAAOMﬂmn

byl A ) A OOl
0<t<t+h<T he

<CllAuulla,(q.0)-

Putting this inequality in {6.5) we obtain the needed estimate (6.1). Thus the
theorem is proved. ]



252 0. SH. MUKHTAROV AND H. DEMIR Isr. J. Math.

References

{1] M. C. Agronovich, Spectral properties in problems of diffraction, in Generalized
Method of Eigenoscillation in the Theory of Diffraction (N. N. Voitovich, B. Z.
Kazenelenbaum and A. N. Sivov), Nauka, Moscow, 1977 (Russian).

[2] O. V. Besov, V. P. Ilin and S. M. Nikolskii, Integral Representation of Functions
and Embedding Theorems, Vol. 1, Halsted Press, New York, 1978.

[3] N. Dunford and J. T. Schwartz, Linear Operators, Part II, Spectral Theory, Inter-
science, New York, 1963.

[4] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York,
1966.

[5] A. V. Likov and Yu. A. Mikhailov, The Theory of Heat and Mass Transfer,
Qosenerqoizdat, 1963 (Russian).

[6] P. Je. Sobolevski, The coercive inequality for the abstract parabolic equations, Dok-
lady Adakemii Nauk SSSR 157, No. 1 (1964), 52-55 (Russian).

[7] H. Triebel, Interpolation Theory. Function Spaces. Differential Operators, North-
Holland, Amsterdam, 1978.

[8] S. Ya. Yakubov, Linear Differential-Operator Equations and their Applications,
ELM, Baku, 1985 (Russian).

[9] S. Ya. Yakubov, Completeness of Root Functions of Regular Differential Operators,
Longman, Scientific, Technical, New York, 1994.



