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ABSTRACT 

In this paper, the mixed problem for parabolic equations is investigated 

with the discontinuous coefficient at the highest derivative and with non- 

standard boundary conditions. Namely, the boundary conditions contain 

values of the solution not only on the boundary points, but also on the 

inner points of the considered domain as we]]. Moreover, abstract func- 

tionals are involved in the boundary conditions. We single out a class of 

functional spaces in which coercive solvability occurs for the investigated 

problem. 

1. S t a t e m e n t  o f  the  p r o b l e m  

Let us consider a parabolic equation 

(1.1) Ou + a(t, x) 02u 0 - - [  ~ x 2 + b ( t , x ) u = f ( t , x ) ,  t e [0 ,  T], xe [ -1 ,1 ] \{0}  

with functional, many-point conditions 

(1.2) 

Llu( t ,  . )  = aa u('~')lt~ t , -  1) 

L2u(t, .) = t~2- u (m~)x (t, +0) 

n l  

-}- E 7]lkU(xm')(t, Xlk) -}- Tlu( t ,  o) = O, 
k = l  

+/32u(~ "~) (t, 1) 
n2 

+ E ~2ku(m2)(t, X2k) + T2u(t, *) = O, 
k----1 
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transmission conditions 

(1.3) Lyu(t, *) = 5y_2u (m~) (t, -0)  +~/y_2u ('~) (t, +0)+Tun(t, .) = O, y = 3, 4 

and initial condition 

(1.4) u(0, x) = no(x), 

where a(t,x) = al(t) at (t,x) E [0, T] x [-1,0)  and a(t,x) = a2(t) at (t,x) E 
[0, T] × (0,1]; for each y = 1, 2, 3, 4, my = 0 o r  1; xlk E ( -1 ,0) ,  x2k E (0,1) are 
intermediate points; Ty are abstract linear functionals; ai(t), b(t,x) and f ( t ,  x) 
are complex valued functions; all coefficients of the boundary and transmission 
conditions are complex numbers; u (my) (t, :t:0) denotes lim~_.+0 u (m~) (t, x). 

Problems of the above type arise, as a rule, in problems of the theory of heat 

and mass transfer (see, for example, [5]), in diffraction problems (see, for example, 
[1]) and in a varied assortment of physical transfer problems. 

2. T h e  C a u c h y  p r o b l e m  for t he  dif ferent ia l  e q u a t i o n  in B a n a c h  space  

c o r r e s p o n d i n g  to  t he  p r o b l e m  (1 .1) - (1 .4)  

For any t E [0,T] denote by A(t) a linear operator in Banach space Lq(-1 ,  1), 
1 < q < oc, with domain of definition 

D(A) - -n (A( t ) )  = {wE Wq2(-1,0)@ W2(0,1)] Lyu=O,  y =  1, 2, 3, 4} 

independent of t E [0, T], and with action law 

(2.1) A(t)u = a(t, x)u"(x) + b(t, x)u(x). 

Then the problem (1.1)-(1.4) may be rewritten in the differential-operator form 

(2.2) u'(t) + A(t)u(t) = f(t) ,  u(O) = no, 

where u(t) = u(t, .) ,  f ( t )=  f( t ,  .) are functions with values in the space Lq(-1 ,  1) 

and no(.) = uo E Lq(-1,  1). Here, by W q ( - 1 , 0 )  ~ W~(0,  1) we denote the 

Banach spaces of functions u(x) on ( -1 ,  1) belonging to Wq2(-1, 0) and Wq2(0, 1) 

in ( -1 ,  0) and (0, I), respectively, with the norm ]Iuliq,m -- ]luilwF(_l,0) + 
]luliw~,(o,D where, as usual, iq(a, b) and Wq(a,b)  are the well-known Sobolev 

spaces. 
For estimating the resolvent of operator A(t) we shall investigate the corre- 

sponding boundary-value problem for ordinary linear differential equations. 
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3. T h e  as soc ia t ed  spec t ra l  p r o b l e m  

The following nonhomogeneous boundary-value problem for ordinary differential 

equations is called the associated spectral problem for the problem (1.1) (1.4): 

(3.1) L(&)u = a(x)u" + b ( x ) u -  Au = f (x ) ,  x • [-1, 1]\0, 

(3.2) L y u = g y ,  y = l ,  2, 3, 4, 

where the boundary functionals Ly are defined by (1.2) and (1.3); b(x) is a 

bounded measurable function on [-1, 1]; a(x) = al at x • [-1, 0), a(x) = a2 at 

x • (0, 1]; ai ~ 0 and gy are some complex numbers. 

Note that boundary value problems for ordinary differential equations with 

functional, many point conditions were first investigated by S. Ya. Yakubov (see, 

for example, [8, 9]). 

First we study the principal part of the problem (3.1), (3.2). Namely, denoting 

(3.3) no(A)u = a(x)u"(x)  - Au(x), nyou = L y u -  Tyu, y = 1, 2, 3, 4, 

where Tuu nv = T y u + ~ k = l  ~ykU(m~)(Xuk ) for y = 1, 2 and Tyu = Tyu for y = 3, 4, 
consider the pure differential problem 

(3.4) Lo(A)u = f (x ) ,  Lyou = gy, y = 1, 2, 3, 4. 

In this paper, everywhere the angle ( - ~  + ~ + c) < arg A < (r  + w - e), where 

= max{argal ,  arga2} and w = min{argal,  arga2}, is denoted by GE and the 

number 0 is defined as 

0 ~- 0:1/3 2 ~ I ( v ~ )  m 3 - m 4  (~2( - -V/~ )  m 3 - m 4  , 

where v ~  denotes v ~ e x p ( i a r g z / 2 ) , - T r  < argz <_ 7r. 

LEMMA 3.1: Let 0 ~ O. Then for any ¢ > 0 there exists RE > O, such that for 

all A E G~ for which [A I > RE the linear operator 

Zo()~): u --+ (Lo(A)u, LloU, L20u, L30u, L40u) 

from W2(-1,0)  ® Wq2 (0, 1) onto Lq(-1 ,  1) @ C a is an isomorphism and for these 

A for the solution of problem (3.4) the following coercive estimate holds: 

2 4 

k=O y = l  
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where C(e) is a constant which depends only on E. 

Proof: Continuity of the operator L0(,~) is obvious. Let us prove that for indi- 

cated ,~ the operator L0(A) has a continuous inverse Lol(&). Let f C L q ( - 1 ,  1), 

A E G~ and I,xl be sufficiently large. We seek a solution u(x)  = u(x ,  )~) of the 

problem (3.1), (3.2) in the form of the sum u(x) = u l (x )  + u2(x), where u l ( x )  = 

Ul(X, A) is some solution of the equation Lo()~)ul = f ( x )  and u2(x) = u2(x, A) is 

a solution of the boundary value problem 

(3.6) Lo(A)u2=O,  L v o u 2 = g u -  Lvoul,  y =  l, 2, 3, 4. 

For a short exposition, denoting 11 = ( -1 ,  0), /2 = (0, 1) and A = s 2, consider 

the equations 

(3.7) ayU'l 'y(X)--S2Uly(x)=fy(x) ,  x e R = ( - -oc ,  oc) ,  y - -  1 ,2,  

where f y (x)  = f ( x )  at x E I v andfy(X) = 0 at x ~ I v. Applying the Fourier 

transformation 

to the equation (3.7) we have 

(ay(ia) 2 - s2)FUlv = F l y .  

Since for ,k E Ge, cr E R the estimate 

(3.8) Jay(let) 2 - s2J > C(e) (Icrl 2 + ]sl z) 

holds, by virtue of the well-known properties of the Fourier transformation for 

k = 0 ,  1, 2 w e h a v e  

(3.9) 

U~ky)(X) = g -1 (( i~)kguly)  

= F -1 (( ia)k(ay( ia)  2 - s 2 ) - l F f y ) ,  

where F -1 is the inverse Fourier transformation. In view of (3.8) for ,~ C G~ the 

functions 

h ~ ( o )  = ~ 2 - ~ ( i ~ ) ~  (av( i~ )  2 - ~ 2 ) - 1 ,  k = 0, 1, 2 

are continuously differentiable on R and satisfy the inequalities 

Ihky(~)l ~ C(E), Jh~y(~)l ~ C(~)l~1-1. 
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Then  by vir tue of the Mikhl in-Schwartz  theorem [3, p. 1181] the functions hky (a)  

are Fourier mult ipl iers  from Lq( -1 ,  1) to Lq( -1 ,  1), i.e. 

I[F-l(hky • Ff)Ilcq(R) <_ Cky[lfllcq(R) 

for all f E Lq(R), where Cky are constants.  Hence the function 

Uly(X ) ~--- F - 1  ((av(ia) 2 - s 2 ) - l F f y )  

found from (3.9) at  k = 0 is a solution of equat ion (3.7) belonging to Wq2(R) and 

for which the es t imates  

(3.10) [sl2-k[lU~ky)[lLq(~ ) = [IF-t(hky • Ff)l[Lq(e ) <_ CkyllfllLo(~), k = O, 1, 2 

are satisfied. Consequently,  the function Ul(X) defined by ul(x)  = u11(x) at  

x C I1 and ul(x)  = Ul2(X) at x E h is a solution of the equat ion Lo(A)ul = f 
and, by (3.10), satisfies the following estimate:  

2 

(3.11) E I'~ll-k/2[lUll[q, k <- c(c)[Ifl[q, °, 
k=0 

Now let us prove tha t  for any complex numbers  g~, Y = 1, 2, 3, 4 the p rob lem 

(3.6) has a unique solution u2(x) = u2(x,.~) belonging to Wq2(-1, 0)(9 Wq2(0, 1) 

and satisfying the es t imate  (3.5). 

The  general solution of the equat ion Lo(A)u = 0 can be represented in the  

form 

4 

(3.12) u2(x) = E cyu2y(x) 
y=l 

where the solutions u2y(x) are defined by u2y(x) = exp(AWyX) at  x • f~y and 

u2y(x) = 0 at  x ~ fry, where COl = ( v / ~ )  -1,  w2 = - (v/hi- )  -1,  w3 = (vZd2) -1 ,  

w4 = - ( v / ~ )  -1,  f~l = f~2 = I1, f~3 = ~4 = /2. By subs t i tu t ing  (3.12) into 

the bounda ry  conditions of problem (3.6) we obtain  a sys tem for finding the 

coefficients cy, y = 1, 2, 3, 4, 

4 

(3.13) E cyLiou2y = gi - LioUl, i = 1, 2, 3, 4. 
y=l 
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Below, in terms of [M], where M is some complex number, we denote any function 

of the form M + r(£), where r(,k) ~ 0 for ~ E G~ as I~I --+ co. Then, using the 

inequality 

sin 
(3.14) Re((-1)Ywys) < --5-1~,11~1, ,x e G~, 

we can obtain the following asymptotic formula for the determinant A(A) = 

det(Liou2y) of the system (3.13), 

A(~) = 

(O.)l 8)ml [~1] (022s)mle--w~S[otl] 0 0 
0 0 (0338)m2ew3s[~2] (0.)48)m2 [C~2] 

(~'lS)m~7~ (~2~) '~7~ (~3~)m~ (~4~)m~5~ 
(~'~.)m47~ (~2~)m';: (~3S)m'52 (~4~)'~: 

Using the inequality (3.14) it is easy to verify that 

(3.15) A (~) = w~l w~2 sE:=~ ~ e - ~  ~e~" [0]. 

Since 0 # 0, then for any ~ > 0 there exists R~ > 0 such that for all ~ E Ge, 

I,kl > Re we have A(,X) # 0. Thus, for these ~ the system (3.13) has a unique 

solution 
4 Ayi(~) 

cv=E A(.X) (g'-Li°ul)' y = l ,  2, 3, 4, 
i=1 

where Aui()~ ) is an algebraic complement of the (y,i)th element of the 

determinant A()Q. Hence 

(3.16) U2(X) ---- E A()Q (gi - -  Li0Ul u2y(x). 
y=l i~--I 

Now we can estimate the norms Itu~)llq,0 for m = 0, 1, 2. Using the inequality 
(3.14) from the explicit form of the algebraic complement Ayz(,k) we can obtain 

the following asymptotic equations in the form 

(3.17) 
A ~ 3 ( ~ )  = s ml+m~+ '~4  [e~3], 
Ay4(A ) = 8ml-l-m2+m3[~y4], y-= 1, 2, 3, 4, 

where 0~i axe complex numbers. 
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Then from the asymptotic expressions (3.15), (3.17) and inequality (3.14) it 

tbllows that 

(3.18) ay~(~) (m) "]]U2y ][q,0 < C(£)[8[ -m~-l/qTm, /~ C Ge, [/~] > R e. 

Hence, for any m = 0, 1, 2 we have 

4 

(3.19) Ilu m)llq,0 _< c(c)lsl  - .(Igyl + [L 0ull) - 
y=l 

With the estimate ILy0Ull = ILyoul(.,A)[ for A E GE, ]A] -+ cx~ we use the 

interpolation inequality [2, Theorem 3.10.4] 

(3.20) 

max lu(J)(x)i <_ C ( l- lldm)llL (o,b> +  - llullLq(a,b)) , U E W~(a,b),  
% 

~e[~,b] 

where 0 < j < rn, 7 = (j + 1/q)/m, ¢ > 0 is a sufficiently small number, C is a 

constant, and [a, b] is a finite segment. Setting ¢ = [s[ -2 and taking into account 

estimate (3.11) we get 
my 

lLy0ut(-,)~)l ~ C(~) E ([sl-2+¢+l/qllu~'llq,0 + tsY+'/qtlu~llq, o) 
j=0 

<_ c(c)lsl-2+m,+l/qllfllq,o, ;~ • C~. 

Substituting this estimate into (3.19) we get 

4 
18[2-m][u~m)[]q,O ~ - C(g) (HfHq,O T E ]812-mv-1/q[gy[), m- -O,  1, 2, 

y=l 

which is valid for A • G~, IAI > R~. It follows from this and (3.11) that the 

estimate (3.5) holds for the solution u(x,A) -- ul(x,A) + u2(x,A) to problem 

(3.4). Uniqueness of this solution follows from the uniqueness of the solution to 

problem (3.7). The lemma is proved. | 

4. T h e  F r e d h o l m  p r o p e r t y  o f  t h e  ma in  s p e c t r a l  p r o b l e m  

To prove the coerciveness of the main spectral problem (3.1), (3.2) we shall first 

establish the Fredholm property of this problem. We assume that the linear 

bounded operator A from the Banach space E into a Banach space F called a 

Fredholm, for the range of values R(A) = {Au t u E E} closed in F,  KerA = 

{u E E I Au = 0} and cokerA = {v' E F'[ v'(Au) = O,u E E} are finite- 

dimensional subspaces in E and F ~, respectively, and dim ker A -- dim cokerA, 

where F '  is a dual to F (see, for example, [9]). 
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LEMMA 4.1: Let the linear functionals Ty, y = 1, 2, 3, 4 be continuous in space 
w~( -1 ,  0) • w~(0,1). Then the linear operator 

t(,k): u -+ (L(A)u, LlU, L2u, L3u, L4u) 

from w~( -1 ,0 )  • w~(0,1) to cq(-1,1)  • c ' is Fredholm. 

Proof." Let Ao E Gz be any complex number. Defining the auxiliary linear 

operator LI(,X) by 

D(L~(),)) = D(L()~)), L~(~)u = (b(x)u(z) + (),o - , ~ ) L t ( x ) , T l q d ,  - . .  , ~ / % 4 u ) ,  

we can represent the operator L(,X) in the form of the sum L(A) = Lo()~o) + 
LI(A). For Ao E Ge sufficiently large in modulus, the operator Lo(/ko) from 
Wff(-1, 0)OWq2 (0, 1) onto Lq( -1 ,  1)@C 4 is an isomorphism by Lemma 3.1. Since 
the functionals Ty are continuous in W f f ( - 1 , 0 ) •  W2(0, 1) and the embedding 

Wq 2 ( -  1, 0) (~ Wq 2 (0, 1) C Lq ( -  1, 1) is compact [7, p. 350], then the operator L1 (A) 
is compact for any A E C. Now, it is enough to apply the theorem of Fredholm 
operator perturbation [4, p. 238] to the operators Z0(/~o ) and L~(,~), from which 
we obtain that the sum L(A) = L0(A0) + LI(A) is Fredholm. The thorem is 

proved. II 

5. Coe rc ivenes s  of  t h e  m a i n  spec t ra l  p r o b l e m  

Now, using Lemma 3.1 and Lemma 4.1 we can establish the coerciveness of the 

problem (3.1), (3.2). 

THEOREM 5.1: Let 0 ~ O, and the functionals Ty are continuous in the space 

W , ~ ( - 1 , 0 )  ® Wq~(0,1), y = 1, 2, 3, 4. Then for any E > 0 there exists 

Re > O, such that for all ~ ~ G~ for which I;~1 > Re the operator L(A): u --+ 
(L(A)u, LlU, L2u, L3u, L4u) from Wq2(-1, 0) • Wq2(0, 1) onto Lq( -1 ,  1) • C 4 is 
an isomorphism, and for those A for the solutions of the problem (3.1), (3.2) the 

coercive estimate 

(5.1) 

holds. 

Proo~ 

2 ( 
IAIl-k/~ll~llq,k_< c(c) Ilfllq,o 

k-----O 

4 ) 
y=l 

First we shall establish the a priori estimate for the solutions of the 

problem (3.1), (3.2). It is clear that any u E Wq2(-1,0)~ Wq2(0, 1) satisfies the 

problem 

L0(A)u = L ( A ) u -  b(x)u, Lyon = L u u -  2~yu, y = 1 , . . . ,4 .  
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Applying Lemma 3.1 to this problem we have the inequality 

(5.2) 

2 

I~1~-~I1~11~,~ C(~)(IIL(A)u- b(x)~llq,o 
k=O 

4 

+ ~,  Isl(2-'~.-llq)lLyu- tbyul) 
y = l  

4 

< c ( c )  (IIL(A)'~II,;,,o + ~ Isl (2 m~-'/")lLyul 
y = l  

4 

+ IIb(~)~llq,o + ~ Isl(2-"~-l/q)lTyul) 
y = l  

which is valid for all A E G~ sufficiently large in modulus,  where A = s 2. 

Obviously 

(5.3) 
4 4 

y=l y=,  
2 

<_ c1~1-'/~ ~ 1~12-kll~ll~,k - 
k=O 

Denote 
~y 

k = l  

Let y = 2; then xyk E (0, 1). Using, for example, [2, 2.8.3], we construct the 

function r](x), which satisfies the following conditions: 

1, x E [(% 1 - d], 
c C ~ ( t R ) ,  z ] ( x ) =  O, x E f O , } 5 ] U [ 1 -  1 O < z ] ( x ) < l ,  ~6, 1], - - 

where (~ = miny,k{Xyk, 1 -- xyk}. Then 

(5.4) I~r'~Oltl ~ C[1¢4(rn~)1]C[5,1-5] ~ Cll(~t)(ray)lIc[o,1 ]. 

By virtue of [2, Theorem 3.10.4], 
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From (5.4), (5.5) and estimate (3.5), for a solution of problem (3.4) for these A 
we find that 

1~12-m.-'l~lTOul < Clsl2-'~-llqll(~7~)(m.)llc(o,~) 

(5.6) 

_< C(ll,ull~,~ + I~l~lI,,,lI~,o) _< c(~)llLo(;~)(,u)lIq,o 
2 

< c(c)(livL(~)uliq,o + Ildx)b(x)u(x)ll~,o + y~ IsI2-kllullq,k-,) 
k = l  

2 

k ~ l  

For any (~ > 0 we have 

II~ll,,,k-, _< ,~llull~,k + c(~)ll~ll,,,o; 
then by virtue of (5.6) 

I812-my-1/qlToul < C(6) Ilf[Iq,o + ~ ,  Isl2-k(~l[ullq,k + C(~)llullq,o) 
k----1 

2 

(5.7) < c(~)ll.fll,,,o + (c(~),~ + c(~, ~)l~l -~) ~ I~l~-ki)~ll~,k. 
k----O 

Here we used the following obvious inequality: 
2 

1812-kllullq,0 < Isl-llsr211~llq,0. 
k = l  

Similarly, the estimate (5.7) can be established for the other values of y, i.e. 
y = 1, 3, 4. It is clear that for a f i x e d c  > 0 i t  is possible to choose~ > 0 s o  

small and [Am so large that 

Clsl -u~ + c(~)~ + c(~,,~)l~l-' < 1. 
By taking into account (5.3) and (5.7) in (5.2) we obtain for 181 > Re the next a 

priori estimate, 
2 4 

k = 0  y : l  

From this inequality it follows that a solution of the problem (3.1), (3.2) is unique, 

i.e. d imKer L(A) = 0 and L-I(X) is continuous. Then by virtue of Lemma 4.1, 

R(L(A)) = Lq(-1,  1) @ C 4. Consequently, the operator L(A) is an isomorphism. 

The estimate (5.1) for the solutions of the problem (3.1), (3.2) is obtained from 

the found a priori estimate (5.8) immediately. Therefore, the theorem is proved. 
| 
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6. Coerciveness  of  the  Cauchy problem for the  discont inuous  parabolic  
equat ion  in the  Banach  space Lq(-1, 1) 

In this section, using the results of section 5 above, we indicate a class of Banach 
spaces for which the coercive solvability of the considered problem (1.1) (1.4) 
has been undertaken. 

By C~ ([0, T], Wq k) we shall define the set of continuous functions u(t) ,  on [0, T], 

with values in Banach space W q k ( - t , 0 ) @  Wqk(0, 1), k = 0, 1, 2, for which the 

norm 

Ilull~,(q,k) = max  [lu(t)llq,k + sup t ~ I[u(t + h) - u(t)llq,k 
te[0,T] O<_t<t+h<_T h a 

is finite, where ~ E (0, I) is some number. It can be shown that the linear space 

C~([0, T], Wq k) is a Banach space under the above norm llull~,(q,k). 

THEOREM 6.1: Suppose the following conditions are satisfied: 

(1) ]argai( t )[  > 7r/2 f o r a n y t  e [0, T], i = 1, 2. 

(2) The  functions t --+ ai: [0, T] -~ C (i = 1,2) and t --+ b(t,*): [0, T] 

L q ( - 1 ,  1) satisfy the H61der condition with power a, i.e. for all 0 <_ t < 

t + h < T  

lai(t + h) - a(t)[ < Ch ~, Ilb(t + h, . )  - b(t, 0)11q,0 ~ Ch ~. 

(a) For any t e [0, T] 

31 72 ] 
O(t) = a,/32 5 , (V~a(t ) )ma_m" 5 2 ( _ ~ ) r ~ a _ m 4  # 0. 

(4) The functionals Ty (!/ = 1, 2, 3, 4) are continuous in the space 
Vv'qm~ ( -  1, 0) G Wg~ (0, 1). 

Then for any f • Cg([O, TI ,Lq)  and for any uo • W ~ ( - 1 , 0 )  (9 W~(O, 1) such 

that  Lyuo = O, y = 1, 2, 3, 4 there exists a unique solution u(t)  = u(t,  x) of  the 

problem (1.1)-(1.4) and the following coercive est imate holds: 

(6.1) du ~,(q,O) 7 /  + II<l<a,2) <_ C(ll/ll ,(q,o) + II o[Iq,2), 

where the constant C is independent  of f and *to. 

Proof'. The problem (1.1)-(1.4) is t ransformed to the operator-differential form 
as (2.2). We set 

= sup m a x { a r g ( - a t ( t ) ) , a r g ( - a 2 ( t ) ) } ,  
te[O,T] 

CO = inf min{arg(--a l ( t ) ) ,arg(--a2( t ) )} .  
te [O,T] 
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From the first condition of this theorem it follows that there exists a number 

e > 0 s o t h a t  {A: R e A > 0 }  C {A: - T r + ~ + s < a r g A < ~ r + w - e } .  Then by 

virtue of Theorem 5.1, there exist a number a > 0 such that for the resolvent of 

the operator A(t)  the estimate 

(6.2) [l(A(t) + M)-I[I ~ C(1 + I~Xl) -1, aeA ~ ~r 

holds. 

Consequently, there exists a number # > 0 such that the operator Au( t  ) = 
A(t)  + # I  has a bounded inverse. 

Let us establish that the operator function A(t)(A(O) + #I)  -1 satisfies the 

HSlder condition with power a. Using inequality (3.20), in view of condition (2), 

for u E D(A)  we have 

(6.3) 

II(A(t + h) - A(t))Ullq,O <lt(a(t + h, . )  - a(t ,  .))u"(.)]lq,o 

+ max l u (x ) l l l b ( t+h , . ) -b ( t , . )Nq ,O  
xE{--1,1]\0 

<_Ch~llUllq,2. 

It is necessary to note that,  here and everywhere, any constant appearing in 

the estimates is denoted by the same symbol as C. 

Further, by virtue of Theorem 5.1 the operator Au(0 ) acting from Wq~(-1, 0) @ 

WqZ(0, !) onto Lq(-1 ,  1) has a bounded inverse. Hence, the inequality (6.3) 

implies that 

I[(A(t + h) - A(t))Ullq,O <_ Ch~llAu(O)ullq,O, u ~ D(A) .  

From this, it immediately follows that 

(6.4) ]](A(t + h)A~'(O) - A(t)A;l(O))u[]q,O < Ch~llullq,O, u e Lq(-1 ,  1), 

i.e. the operator function A(t )A~I(o)  satisfies the HSlder condition with power 

a. Therefore, having in view the work [6] we get the following estimate for the 

solution of the problem (1.1)-(1.4): 

(6.5) d~ + [I(A + ~I)ull~,<q,O~ ___ C(llfll~,(q,O) + Iluollq,2). 

Now let us establish that the estimate 

(6.6) II~ll~,(q,2) ~ CIIA.ull~,(q,o) 
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is valid for all u E Cg([0, T], Wq 2) for which boundary  conditions (1.2) and (1.3) 

hold. For this, first we establish a series of auxiliary estimates. By 

using the est imates (6.2) and (6.4) it follows that  the real value function t --+ 

]IAu(O)A~I(t)II : [0, T] --+ R is bounded.  Then,  having in view the lat ter  condi- 

tions and using Theorem 5.1 we have 

(6.7) II~llq,2 -< CIIA.(O)u[Iq,O <_ CIIA.(O)A~I(t)II • IIA.(t)ul[~,o 

<_ CIIA~(t)ullq,o, u E D(A). 

By using Theorem 5.1 for 0 _< t < t + h < T, we also have 

Ilu(t + h) - u(t)llq,2 <_C[IA,(t)(u(t + h) - u(t))[[q,O 

<C(I tA , ( t  + h)u(t  + h) - Av(t)u(t)llq,o 

+ II(A,(t)  - A , ( t  + h))u(t  + h)llq,0). 

Further ,  recalling that  the operator  function A,( t )A~I (O)  satisfies the HSlder 

condit ion with power c~, we get 

N(A.(t) - A . ( t  + h))u(t  + h)llq,o <_ Chal[A.(O)u(t  + h)llq,o 

< Ch~l]A.(O)A~l( t  + h)l] 

• [IA.(t  + h)u(t + h)Hq,o 

<_ Chal lA . ( t  + h)u(t  + h)llq,o 

<_ Ch a m a x  IlAt~(t)u(t)l[q,o. 
0 < t < T  

Hence, 

(6.8) [lu(t + h) - u(t)llq,2 _< C(IIA,(t + h)u(t + h) - A,(t)u(t)llq,O 

+ h a max []A,(t)u(t)[[q,O). 
0 < t < T  

Taking into account (6.7) and (6.8), we finally have 

I[u[la,(q,2) = max Hu(t)l[q,2 + sup t a [lu(t + h) - u(t)[lq,2 
0 < t < T  O<t<t+h<T ha 

< C (  max IlAu(t)u(t)Nq,o + sup t ~ [[u(t + h) - u(t)l[q'2 ) 
- -  0 < t < T  O<_t<t+h<_T 7 -h~ 

< C (  max IIA.(t)u(t)llq,O 
- -  \ 0 < t < T  

[IA,(t + h)u(t  + h) - A,(t)u(t)l[q,o "~ + t a s u p  
O<_t<t+h<_T ha ] 

<_ClIA~ulla,(q,o). 
Put t ing  this inequality in (6.5) we obtain the needed est imate (6.1). Thus  the 

theorem is proved. | 
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